Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 382: 77-85, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24211369

RESUMO

A method to immobilize glycan-linked amino acids with protected α-amino groups, which are key intermediates to produce the desired neoglycoprotein, to a Biacore sensor chip was developed and its utility for interaction analyses was demonstrated. Two types of diN-acetyllactosamine (diLacNAc)-containing glycans, a core 2 hexasaccharide involving linear diLacNAc that is O-linked to N-(9-fluorenyl)methoxycarbonyl (Fmoc)-Thr and a biantennary diLacNAc that is N-linked to Fmoc-Asn, were used as ligands. For immobilization, the free carboxyl groups of the amino acid residues were activated with EDC/NHS, then reacted with the ethylenediamine-derivatized carboxymethyldextran sensor chip to obtain the desired ligand concentrations. Interactions of the ligands with five plant lectins were analyzed by surface plasmon resonance, and the bindings were compared. The resonance unit of each lectin was corrected by subtracting that of the reference cell on which the Fmoc-Thr-core 1 or Fmoc-Asn was immobilized as a ligand. The carbohydrate specificities of interactions were verified by preincubating lectins with their respective inhibitory sugar before injection. By steady state analysis, the Lycopersicon esculentum lectin showed a 27-fold higher affinity to linear diLacNAc than to biantennary diLacNAc, while Datura stramonium and Solanum tuberosum lectins both showed low Ka,apps of 10(6)M(-1) for these two ligands. In contrast, Ricinus communis agglutinin-120 showed a 3.2-fold higher Ka,app to biantennary LacNAc than to linear diLacNAc. A lectin purified from Pleurocybella porrigens mushroom interacted at the high affinity of 10(8)M(-1) with both linear and biantennary diLacNAcs, which identified it as a unique probe. This method provides a useful and sensitive system to analyze interactions by simulating the glycans on the cell surface.


Assuntos
Aminoácidos/química , Fluorenos/química , Lectinas/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Agaricales/química , Aminoácidos/metabolismo , Amino Açúcares/química , Técnicas Biossensoriais/métodos , Sequência de Carboidratos , Dextranos/química , Etilenodiaminas/química , Fluorenos/metabolismo , Glicosilação , Proteínas Imobilizadas/química , Lectinas/análise , Ligantes , Dados de Sequência Molecular , Lectinas de Plantas/análise , Lectinas de Plantas/metabolismo
2.
J Biol Chem ; 287(27): 23104-18, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22584580

RESUMO

Porcine pancreatic α-amylase (PPA) binds to N-linked glycans of glycoproteins (Matsushita, H., Takenaka, M., and Ogawa, H. (2002) J. Biol Chem., 277, 4680-4686). Immunostaining revealed that PPA is located at the brush-border membrane (BBM) of enterocytes in the duodenum and that the binding is inhibited by mannan but not galactan, indicating that PPA binds carbohydrate-specifically to BBM. The ligands for PPA in BBM were identified as glycoprotein N-glycans that are significantly involved in the assimilation of glucose, including sucrase-isomaltase (SI) and Na(+)/Glc cotransporter 1 (SGLT1). Binding of SI and SGLT1 in BBM to PPA was dose-dependent and inhibited by mannan. Using BBM vesicles, we found functional changes in PPA and its ligands in BBM due to the N-glycan-specific interaction. The starch-degrading activity of PPA and maltose-degrading activity of SI were enhanced to 240 and 175%, respectively, while Glc uptake by SGLT1 was markedly inhibited by PPA at high but physiologically possible concentrations, and the binding was attenuated by the addition of mannose-specific lectins, especially from Galanthus nivalis. Additionally, recombinant human pancreatic α-amylases expressed in yeast and purified by single-step affinity chromatography exhibited the same carbohydrate binding specificity as PPA in binding assays with sugar-biotinyl polymer probes. The results indicate that mammalian pancreatic α-amylases share a common carbohydrate binding activity and specifically bind to the intestinal BBM. Interaction with N-glycans in the BBM activated PPA and SI to produce much Glc on the one hand and to inhibit Glc absorption by enterocytes via SGLT1 in order to prevent a rapid increase in blood sugar on the other.


Assuntos
Duodeno/metabolismo , Glicoproteínas/metabolismo , Microvilosidades/metabolismo , alfa-Amilases Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Animais , Glicemia/metabolismo , Duodeno/citologia , Enterócitos/enzimologia , Galactanos/metabolismo , Glicômica/métodos , Glicoproteínas/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosilação , Homeostase/fisiologia , Humanos , Lectinas/metabolismo , Ligantes , Mananas/metabolismo , Oligo-1,6-Glucosidase/metabolismo , alfa-Amilases Pancreáticas/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transportador 1 de Glucose-Sódio/metabolismo , Amido/metabolismo , Sacarase/metabolismo , Suínos
3.
Glycobiology ; 17(7): 784-94, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17369286

RESUMO

Elucidating the mechanisms and factors regulating multimerization is biologically important in order to modulate the biological activities of functional proteins, especially adhesive proteins in the extracellular matrix (ECM). Vitronectin (VN) is a multifunctional glycoprotein present in plasma and ECM. Linkage of cellular adhesion and fibrinolysis by VN plays an essential role during tissue remodeling. Our previous study determined that the collagen-binding activity of VN was markedly enhanced with the decreased glycosylation during liver regeneration. This study demonstrated how alternations of glycans modulate the biological activity of VN. Human and rat VNs were used because of their similarities in structure and activities. The binding affinity of human VN to immobilized collagen was shown to be higher at pH 4.5 than at 7.5, at 37 degrees C than at 4 degrees C. Sedimentation velocity studies indicated that the greater the multimerization of human VN, the better it bound to collagen. The results indicate that the collagen binding of VN was modulated through its multimerization. Stepwise trimming of glycan with various exoglycosidases increased both the multimer size and the collagen binding of human VN, indicating that they are modulated by changes in glycosylation. The multimer sizes of VN purified from plasma of partially hepatectomized (PH) rats and sham-operated (SH) rats increased by about 45 and 31%, respectively, compared with those of nonoperated (NO) rats. In accordance with this, PH-VN exhibited remarkably enhanced collagen binding than SH-VN and NO-VN on surface plasmon resonance. In the PH rat sera, the multimer VN was increased in both amount and size compared with those in SH- and NO-sera. The results demonstrate that glycan alterations during tissue remodeling induce increased multimerization state to enhance the biological activity of VN.


Assuntos
Colágeno/química , Regeneração Hepática , Vitronectina/biossíntese , Vitronectina/química , Animais , Adesão Celular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Masculino , Modelos Biológicos , Ligação Proteica , Ratos , Ratos Wistar , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...